

Current Die Thinning and Bonding Technologies for Solar Sails -An Overview

Presented at 2nd Annual NEPP Conference May 15 – 16, 2001, Pasadena, CA

W. Sokolowski, S. D'Agostino
Jet Propulsion Laboratory

Contents

- Introduction
- Overview Objectives
- Die Requirements
- Silicone Die Thinning
 - General trends
 - Current techniques
- Bonding
- Summary

Introduction Basics of Solar Sails

*Basics

- Solar sails are large ultra-light mirrors which use light from the sun (or a laser) for low-thrust propulsion.
- Photons bounce off the sail surface.
- Change in photon momentum transferred to said
- A mirror will be pushed twice: on impact and on reflection
- Sun/sail orientation controls orbital velocity

Square

Advantages

No need to carry onboard propulsion system or fuel.

- Reduced mass allows greater payload capacity and much shorter trip times for high energy missions.
- Constant low thrust counteracts gravity to enable unique non-Keplerian orbits and new vantage points.
- Sails that use laser energy beamed from Earth may enable rapid access to the interstellar environment.

Blade Sail

Introduction Future Solar Sails

· Highly-integrated solar sails consist of thin membrane partly populated with multifunctional patches.

Sensors

Thin Film Photovoltaics

Phased Array Elements

Flexible Electronics

Solar Sails Areas of Technology Development

- Architecture and Planning
- Sail Development
- Advanced Packaging
 - Thinned Die on Film
 - Instruments & Sensors-on-a-Chip
 - Wireless / Distributed Systems
- Large Structure Environments and Long Life
- Large Lightweight Structures

Thinned dies on film was recognized as one of most important and challenging technologies

Overview Objectives

- •Perform a review of the current technologies for thinning of silicon die and bonding onto membranes.
- Find out if existing technologies are applicable to solar sails
- Outline study's conclusions and recommendations for possible follow-on activities.

Die Thinning/Bonding Requirements

- •Silicon based die
- Ultra-light weight
- Thickness: as thin as possible (microns)
- Flexible/high bending capability
- Attachable to polymeric membrane
- Long term high reliability (> 10 years)
 - Mech./thermal/electrical functionalities
 - High/low temps resistant
 - Thermo-mech. cycling resistant
 - Space radiation resistant

Die Thinning General Trend

• Historically wafer thinning has been used:

- Achieve a uniform thickness
- When heat was a problem
- For most applications wafers were not thinned

Number of components in 3D space would double every 18 - 24 months

• Solution: vertical miniaturization

- Die thinning $(t < 250 \mu)$
- Thinned 3D stacking (thickness ~ 0.4 mm)

• Today, that is changing

- New miniature packages and applications
- Needs for higher I/O, increased performance & speed
- Demands for high packaging density

* Tru-Si Technologies

IC packaging "smaller is better - thinner is better"

Die Thinning Advantages/Applications

Advantages/Benefits

- Smaller package profile
- More flexible
- Increased performance
- Better reliability
- Smaller saw street dimensions

* 50 µm wafer (Tru-Si Technologies)

•Applications

- Space, military, commercial and medical
- Numerous handheld, portable and miniature applications
- Memory cards, smart cards, small disk drives, cell phones, portable computing and other consumer electronics

Die Thinning Current Techniques

- How to thin a silicon die/wafer
 - Mechanical grinding/polishing
 - Wet etching
 - Dry plasma etch

Die Thinning Grinding

- Efficient method at very modest cost and high throughput for thickness > 250 μ First step of thinning
 - •Grinding drawbacks
 - Introduces micro-cracks, residual stress and surface roughness
 - Causes structural damage and lattice disclocations
 - Creates a warpage and bow
 - Reduces mechanical and electrical properties
 - Need a front side protection
- •Damage shall be removed by other thinning methods
- Numerous improvements

* Tru-Si Technologies

Die Thinning Wet Etch

- Follows the grinding step
- Can be used to remove the damage layers

• Benefits

- substantially reduces the stress level
- reduces the warpage
- removes micro-cracks and lattice disclocations
- results in a much stronger wafer/die

• Drawbacks

- requires a protection of front surface
- not practical with bumped wafers/dies
- no good wafer/die thinning uniformity
- increasing difficulty when a thickness $< 250 \mu$

Before and after etching

Die Thinning Dry Plasma Etch

Conventional anisotropic low pressure systems:

- operate in vacuum
- require sophisticated vacuum systems
- slow process and low etch rates

New Atmospheric Downstream Plasma (ADP) developed by Tru-Si Technologies:

- operate at ambient pressure
- isotropic plasma-etch system
- higher etch rates
- design/controls eliminate potential overheating, contamination, etching, thickness non-uniformity, ESD etc

ADP system

Die Thinning ADP by Tru-Si Technologies

•Process description

- Magnetically controlled, inert gas DC arc plasma discharge
- ADP brings reactant gas (FC₄) to the plasma region
- Gas is decomposed and available for reaction
- F reacts with Si and produces the etching
- C byproduct react with O₂ and is prevented from being deposited
- Charged particles recombine outside the plasma
- Lower power density
- Short & repeated exposures to the reaction zone

Die Thinning Atmospheric Downstream Plasma

Benefits

- operate at ambient pressure
 - etch rates at least 20 x > vacuum plasma
- no surface/structural damage nor residual stress
 - no front side protection
- isotropic and uniform etching
 - control of plasma power density and location
- no overheating nor plasma contamination
 - no electrical damage

No Touch ™ holding

- surface temp. $< 125^{\circ}C$

- ideal for damage/stress removal and final thinning

- perfect for thinning of wafers/die with bumps

Die Thinning At Irvine Sensors Corp.

• Proprietary multiple-step grinding/polishing

- 4 and 16 Mb flash wafers were thinned to 25-35 μ
- Chip size was 419 x 449 mils

- 1 Mb SRAM wafer sections were thinned to 30-35 μ
- Chip size was 277 x 542 mils

- Kapton based flexible test vehicle has been used to test ultra-thin flash die.
- Thinned chips were smooth, flexible and electrically functional
- Residual stress too small to measure

Die Bonding Current Methods

• How to attach a thinned die to flexible membrane

Metallization Chip
Substrate

- Wire bonding

- Direct attach

- Flip chip

- Only a few organizations involved

Die Bonding At Irvine Sensors Corp.

- Three bonding methods had been investigated
- Wire & direct bonding failed
- Flip chip bonding was successful:
 - 25 μ thin Flash die face-down
 - Z-conductive epoxy
 - 25 μ Cu laminated Kapton substrate
 - 2-3 μ Au pad

Testing indicated good electrical and mechanical performance after repeated bending & thermal cycling

Die Bonding At Irvine Sensors Corp.

• Reliability testing

Temperature cycling $(+80 \, {}^{\circ}\text{C to} - 60 \, {}^{\circ}\text{C})$

- No failure or change in resistance
- No structural degradation

Bending testing;

- 10 mm curvature
- 4 lbs uniaxial load
- 10,000 cycles

Post-testing evaluation:

- Good structural integrity
- No change in reverse and DC leaking

Bending of Flash die

Die Bonding At University of Arkansas

• Integration of thin (20-35 µ) Si chip-on-flex membrane Demonstration in flip chip and face-up configuration

• Integration of chip carrying polymer patch-on-flex membrane

• Chip-on-membrane and chip carrying patch-on-membrane samples were successfully tested

Conclusions/Recommendations

- Preliminary studies indicate the feasibility of thinning of Si die to few tens microns and bonding it to flexible membrane.
- It appears thin chip-on-membrane systems can be made sufficiently reliable to satisfy solar sails requirements.
- There are several possible techniques to choose from.
- Further evaluation and verification of selected thinning/bonding technologies are recommended for specific flexible sensors and electronics for solar sails.